
M O D U L E F O U R

4 K
e

y
 P

o
in

ts

➤

TIMING,
COUNTING, AND

DATA-HANDLING

INSTRUCTIONS

This module is a fur ther exploration of the MicroLogix 1000’s
programming instructions. Module 3 covered basic relay instructions,
which perform simple ON/OFF operations. All of those instructions
use a basic ladder format. The three sections of this module discuss
programming instructions that are represented in block format. These
sections are:

1. Timing instructions

2. Counting instructions

3. Data-handling instructions

After finishing this module, you will:

■ understand the three timing instructions used in a MicroLogix
1000—timer ON-delay, timer OFF-delay, and retentive timer—
as well as the values and special programming issues associated
with each

■ understand the count up and count down counting instructions
and the reset instruction, including the values and special
programming issues associated with each

■ know how to use data-handling instructions to move and convert
data in a MicroLogix 1000 PLC

2 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

4-1 Timing Instructions

Timing instructions are programming instructions that replace the
need for electromechanical timers in a control system. Timing
instructions perform the same function as electromechanical tim-
ers, but they are more accurate, do not cost extra, and save space.

At the end of this section, you will know:

• timer basics, including timer values and addresses

• the operation of a timer ON-delay instruction

• the operation of a timer OFF-delay instruction

• how a retentive timer instruction works

• how to use and implement the trapping of instanta-
neous timer contacts in a PLC

General Timer Information
Timer Values. A timer instruction has three important values
associated with it:

• the time base

• the preset value

• the accumulated value

Time Base. The time base is the unit of time used by a timer to
time an event. A MicroLogix 1000’s timers can have a time base
of either 0.01 seconds or 1 second. A timer instruction times an
event by counting the number of times the time base has oc-
curred since the instruction was energized. For example, if a
MicroLogix has a time base of 1 second and it is timing some-
thing that is 2 seconds long, the PLC will wait until the time base
has occurred 2 times before the timer times out (see Figure 4-1).

Figure 4-1. Time base illustration.

Time
Base

Timed
Valued

Number of
Times

Time Base
Is Counted

1 sec

0.01 sec

2 sec = 2 times

2 sec = 200 times

Module 4 3

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Conversely, if the PLC’s time base setting is 0.01 seconds, it will
wait until the time base has occurred 200 times before timing
out. The selection of the time base depends on what is most
appropriate for the application.

Preset Value. The preset value of a timer works in conjunction
with the time base by specifying the number of times that the
timer must count the time base. This preset value, which is also
referred to as the number of ticks, is predetermined and prepro-
grammed by the user. Thus, in the previous example of a timer
with a 0.01 time base and a target value of 2 seconds, the preset
value would be 200. This value indicates that the timer must
wait 200 time bases before timing out.

Accumulated Value. The final value associated with a timer is
the accumulated value. This value keeps track of how many
times the time base has occurred since the timer instruction was
energized. When the accumulated value equals the preset value,
the timer will time out because it has reached its target timing
value. So if a timer has a time base of 0.01 and a preset value of
200, the accumulated value will increase by one every 0.01 sec-
onds until the accumulated value equals 200. At that point, the
timer instruction will time out.

Addressing. A MicroLogix 1000 stores data about timers in file
4 of its data file section. This file can store the data of up to 40
timers, numbered 0 through 39. Each of these timers has three
words associated with it (see Figure 4-2). Therefore, the avail-
able addresses in the timer file range from T4:0.0 to T4:39.2 (see
Figure 4-3).

Figure 4-3. MicroLogix 1000 timer addressing.

Figure 4-2. The timer file showing the three words associated with each timer.

40 timers T4:0.0
0.1
0.2

T4:
39.1
39.0

39.2

Timers Timer File
File 44

Timer 0

Timer 1

Timer 39

Control

Timer 1

Timer File
File 4

Preset

Accumulated

0

Word

1

2

4 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Each of the three words associated with a timer holds a specific
kind of data (see Figure 4-4):

• Word 0 holds control data about the status of the timer’s
enable output, whether the timer is actively timing,
and the status of the timer’s done output. The control
word stores this information in bits 15, 14, and 13,
respectively.

• Word 1 stores the timer’s preset value. This is the tar-
get timing value specified in memory.

• Word 2 holds the accumulated value. This value indi-
cates how much time has actually elapsed since the
timer was energized.

In the RSLogix software, the labels PRE and ACC are used to
denote timer words 1 and 2, respectively. Thus, timer words
T4:0.0, T4:0.1, and T4:0.2 are represented as T4:0, T4:0.PRE, and
T4:0.ACC in the RSLogix software.

Timer ON-Delay Instruction
The timer ON-delay instruction is a block-format instruction
that is represented by the symbol shown in Figure 4-5. This
block has two outputs:

• an enable output coil

• a done output coil

Inside the block is information about the timer’s address, time
base, preset value, and accumulated value. A timer ON-delay
instruction energizes its done output after the timer block’s in-
put turns on and a specified delay has occurred. Consequently,
this instruction is sometimes called a timer ON-delay energize
instruction.

Figure 4-5. A timer ON-delay instruction.

EN

DN

TIMER ON-DELAY
Timer
Timer Base
Preset
Accum

TON

T4:18
1.0

4
0

ON Energizes
Delay

Figure 4-4. The data stored in each word of a timer’s address.

Control

Preset

Accumulated

131415

T4:0.0

T4:0.1

T4:0.2

Done
Timer Timing
Enable

T4:0/15 (or T4:0/EN) → set when timer’s input turns ON
T4:0/14 (or T4:0/TT) → set when timer is timing
T4:0/15 (or T4:0/DN) → set when timer has timed out

Module 4 5

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Figure 4-6 illustrates how a timer ON-delay instruction works.
When the timer block’s input has logic continuity, the block’s
enable output will turn on. As a result, a 1 will be stored in bit
15 of the timer’s control word. Once the timer is enabled, it will
start to time. Thus, a 1 will be stored in bit 14, which is the timer
timing bit. As the timer times, the accumulated value increases
until it equals the preset value. At that point, the timer timing bit
will become a 0, and the done bit will become a 1, meaning that
the done output will turn on. This done output is the timer’s
delay action contact.

The timer-ON delay instruction’s enable output will remain on
as long as the input logic to the block remains energized. How-
ever, the timer will stop timing as soon as the accumulated value
equals the preset value. The timer’s input logic must turn off
and then on again before the timer will start timing again. The
timer’s done output can be referenced throughout the program
by XIC and XIO contacts to implement the time delay.

In the ladder program shown in Figure 4-6, the pilot light output
will turn on four seconds after the push button input is pressed.
In the ladder diagram, the input logic to the pilot light is a
contact that references the done output coil of the timer block.
The timer’s address is T4:18, its preset value is 4, and its time
base is 1 second.

Figure 4-7 shows the operation of the same ladder diagram,
using a timing diagram to keep track of when the input and
outputs turn on and off. The ladder diagram operates like this:

• When the timer’s input turns on, it will cause the timer’s
enable output to turn on. When this happens, the timer
will start timing, but the done output coil will remain
off. The time between the timer being energized and
the done output being energized is the four-second
delay implemented by the timer.

Figure 4-6. The operation of a timer ON-delay block in a control program.

Figure 4-7. A timer ON-delay block and its associated timing diagram.

EN

DN

I:0.0/0 T4:18/EN

T4:18/DN

L2 L2L1L1

T4:18/DN O:0/0

O/0I/0
PB PL

TIMER ON-DELAY
TON

T4:18
1.0

4
4

Timer
Timer Base
Preset
Accum

131415

101

EN TT DN

Word T4:18.0

EN

DN

O:0/0

I:0.0/0

T4:18/DN

Timer Input

T4:18/EN

T4:18/TT

T4:18/DN

1
0
1
0
1
0
1
0

TIMER ON-DELAY

Timer
Timer Base
Preset
Accum

TON

T4:18
1.0

4
0

Delay

6 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

• The timer will stop timing as soon as the accumulated
value equals the preset value.

• When the accumulated and preset values are equal,
the done output will turn on, causing the output coil
that drives the pilot light to turn on.

• The done output—and hence, the pilot light—will stay
on until the timer block’s input turns off. At that time,
everything in the ladder rung will turn off, and the
timer’s accumulated value will be reset to 0.

Timer OFF-Delay Instruction
Figure 4-8 illustrates a timer OFF-delay instruction. This in-
struction looks much like a timer ON-delay instruction in that it
has two outputs—done and enable—and includes information
about the timer’s preset and accumulated values. Although a
timer OFF-delay instruction may look like an ON-delay instruc-
tion, it works a little differently. A timer OFF-delay instruction
de-energizes its done output after the timer block’s input turns
off and a specified delay has occurred. Thus, the timer OFF-
delay instruction is also called a timer OFF-delay de-energize
instruction.

The ladder program in Figure 4-9 uses a timer OFF-delay in-
struction. This circuit works as follows:

• The done output will be off when the program is first
started and the timer’s input is off.

• When the input logic turns on, both the block’s en-
able output and done output will turn on. However,
the timer will not start timing because it is waiting for
an OFF signal instead of an ON signal.

Figure 4-8. A timer OFF-delay instruction.

EN

DN

TIMER OFF-DELAY

Timer
Timer Base
Preset
Accum

TOF

T4:18
0.01
315

0

OFF De-Energizes
Delay

Figure 4-9. A timer OFF-delay block and its associated timing diagram.

EN

DN

O:0/0

I:0.0/0

T4:18/DN

Timer Input

T4:18/EN

T4:18/TT

T4:18/DN

1
0
1
0
1
0
1
0

TIMER OFF-DELAY

Timer
Timer Base
Preset
Accum

TOF

T4:18
0.01
315
315

Delay

Module 4 7

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

• When the block’s input turns off, the enable output
will turn off and the timer will start timing. The done
output will stay on because it is waiting for the timer
to time out before it will turn off.

• Once the accumulated value equals the preset value,
the timer will stop timing and the done output will turn
off, implementing the OFF-delay de-energize function.

• Therefore, the done bit’s action follows the action of
the timer’s input signal, except that the done bit re-
mains on for the specified delay period after the input
turns off. All of the timer’s outputs will now remain off
until the input logic turns on again. At this point, the
accumulated value is reset to 0.

Retentive Timer Instruction
A retentive timer instruction, pictured in Figure 4-10, oper-
ates much like a timer ON-delay instruction. A retentive timer,
however, can stop timing and then start timing again without its
accumulated value resetting to 0.

Figure 4-11 shows a retentive timer circuit and its timing dia-
gram, which work as follows:

• When the input logic turns on, the enable output will
turn on, and the timer will start timing.

• If the input logic turns off, the enable output will turn
off, and the timer will stop timing. The accumulated
value, however, will not reset to 0.

• When the timer starts timing again, it will pick up where
it left off.

• When the accumulated value finally reaches the pre-
set value, the done output will turn on.

Figure 4-10. A retentive timer instruction.

Figure 4-11. A retentive timer circuit and its associated timing diagram.

EN

DN

RETENTIVE TIMER ON

RTO

T4:7
1.0
10
0

Timer
Timer Base
Preset
Accum

EN

DN

I:0.0/0

O:0/0

Reset

T4:7/DN

Timer Input

T4:7/EN

T4:7/TT

T4:7/DN

1
0

1
0

1
0

1
0

RETENTIVE TIMER ON

Timer
Timer Base
Preset
Accum

RTO

T4:7
1.0
10
0

Delay 1 Delay 2

Delay 1 + Delay 2 = Total Timer Delay

8 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Once a retentive timer has timed out, its done output will re-
main on even if its input logic and enable output turn off. A
reset instruction must be used to turn the done output off and
reset the timer’s accumulated value. The operation of a reset
instruction is explained in the counter section of this module.

Trapping
Trapping is a special timer programming issue. The electrome-
chanical timers used in hardwired circuits have two kinds of
contacts:

• time-delayed

• instantaneous

The time-delayed contact is used to turn on the output after
the timer has timed out. The instantaneous contact is used to
seal the timer’s input so that, once the timer has started timing,
it will continue to time even if its input logic turns off. This
provides interlocking in the circuit.

Figure 4-12 illustrates how the two types of timer contacts are
represented in an electromechanical diagram. An instantaneous
contact is represented by a contact symbol, and a time-delayed
contact is represented by a timer switch symbol. The symbol for
an ON-delay timer’s time-delayed contact has an arrow that points
up. This indicates that the contact energizes, or closes, after the
delay following the input’s OFF-to-ON transition. In contrast,
the time-delayed contact for an OFF-delay timer points down,
indicating that it turns off, or opens, after the delay following
the input’s ON-to-OFF transition.

In contrast to electromechanical timers, PLC timers have only
one type of contact—a time-delayed contact. This contact must
not be confused with an instantaneous contact when replacing
relay logic. Consequently, you must use trapping to implement

Figure 4-12. Instantaneous and time-delayed timer contacts as represented in both
an electromechanical system and a MicroLogix system. The XX in the
MicroLogix timer labels symbolizes the timer address.

TON/TOF

N/A

TMR

Electromechanical MicroLogix

TMR

TMR

TMR

T4:XX/DN

T4:XX/DN

Timer Coil

Instantaneous
Contacts

ON-Delay
(Energize) Contacts

OFF-Delay
(De-Energize) Contacts

Module 4 9

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

an instantaneous contact in a PLC timer circuit, if the application
requires it. When you trap a circuit, you use an internal contact
and coil to seal the timer on. You can also use the enable output
of the timer to trap the circuit.

Trapping Circuit—Internal Output. Figure 4-13 shows an elec-
tromechanical timer circuit that will be implemented in a PLC.
In this circuit, the timer will start timing as soon as float switch
FS1 and pressure switch PS1 close. The timer will continue to
time even if the float switch turns off. This is because instanta-
neous contact TMR1-1 will seal the timer’s input logic. After a
10-second delay, the timer will energize time-delayed contact
TMR1-2, causing the solenoid to turn on.

The first step in making this a PLC circuit is to determine which
devices will be connected to the PLC’s I/O interfaces. In this
case, only the float switch, pressure switch, and solenoid will be
connected to the PLC. The rest of the circuit will be implemented
through PLC instructions. The float switch will be connected to
the MicroLogix’s first input terminal, and the pressure switch to
the second terminal. The solenoid will be connected to the first
output terminal.

Figure 4-14 illustrates the ladder program that will implement
the timer circuit in the PLC. This ladder program contains three
rungs:

• The first rung traps the timer on.

• The second rung implements the timing function.

• The third rung implements the time-delayed output
action.

Rung 1. The first rung in the ladder program consists of contacts
that reference the float switch and pressure switch, along with
an internal coil. It also contains an internal contact that refer-
ences the internal coil, which implements the trap. When the

Figure 4-13. An electromechanical timer circuit to be implemented in a PLC.

L1 L2

FS1 PS1 TMR1

10 sec

SOL

TMR1-1

TMR1-2

Figure 4-14.The timer circuit implemented in a ladder program using an internal
output to trap the timer.

I:0.0/0 I:0.0/1

I/1

I/0

B3:0/0

T4:0/DN

L1 L1L2 L2
O:0/0

FS1

PS1

B3:0/0

B3:0/0 O/0

EN

DN

O:0/0

Timer
Timer Base
Preset
Accum

TON

T4:0
1.0
10
0

10 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

float switch and pressure switch turn on, the internal coil will
turn on. Because contact B3:0/0 seals the input, the internal coil
will stay on even if the float switch turns off. Thus, contact
B3:0/0 performs the function of an instantaneous contact.

Rung 2. Rung two actually implements the timer. When the in-
ternal output coil in the first rung energizes, the timer will start
to time because its input logic will be satisfied. Once the accu-
mulated value equals the preset value, the timer’s done output
will turn on because the 10-second delay will be satisfied.

Rung 3. Rung three controls the solenoid output. When the
done output in rung two turns on, the solenoid output will turn
on because its input logic references the done output coil. There-
fore, this PLC circuit implements both the instantaneous and
time-delayed contacts of the hardwired circuit through the use
of internal contacts.

Trapping Circuit—Enable Output. Another way to trap an
instantaneous timer contact is to use a contact that references
the timer’s enable output. In this method, the enable contact is
used to seal the timer’s input, instead of an internal coil and
contact. Figure 4-15 shows an example of this type of trapping.
When the float switch and pressure switch turn on, the enable
output and its corresponding contact will turn on. However, if
the float switch opens, the timer will remain on because the
enable contact will trap it.

Figure 4-16 shows a multispeed motor. In low speed, this motor
operates in a delta configuration. In high speed, it operates in a
wye configuration. In this motor, if the low push button is pressed,
the motor will run at low speed. If the high push button is pressed
after being in low speed, the motor will run at high speed. The
timer in this circuit ensures that a 10.8-second delay occurs be-
fore the motor will run in high speed. Thus, if the high push
button is pressed, the motor will first start out at low speed and

Figure 4-15.The timer circuit from Figure 4-13 implemented in a ladder program
using the enable output to trap the timer.

T4:0/DN

I:0.0/0 I:0.0/1

T4:0/EN

EN

DN

O:0/0

Timer
Timer Base
Preset
Accum

TON
T4:0

1.0
10
0

I/1

I/0
L1 L1L2 L2

O:0/0
FS1

PS1

O/0

Figure 4-16. A multispeed motor circuit.

Low
Low

High

Stop

CR

L

L

L1 L2

OLH

TMR

CR

TMR

TMR

TMR

CR

CR

High

Wye (High)

High Speed Power
to T4, T5, and T6
(T1, T2, and T3 together)

Speed
Low
High

Open Together

T1, T2, T3
All others

L1
T1
T6

Low Speed Power
to T1, T2, and T3
(T4, T5, and T6 open)

T1

T2

T3

T4

T5 T6

T1

T2T3 T5

T4 T6

Delta (Low)

T1

T2

T3

T4

T5 T6

L2
T2
T4

L3
T3
T5

L1

LO

OL
LO

T1

L2

LO

T2

L3

LO

T3

HI

T6

HI

T4

HI

T5

HI HI

OL
HI

Module 4 11

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

rev up to high speed after 10.8 seconds. Notice that the circuit
uses interlocking motor starter contacts so that the high-speed
starter coil will not turn on until the time delay has occurred.

When this circuit is implemented in a MicroLogix, the stop, low,
and high push buttons will be connected to the PLC as real
inputs. The low (L) and high (H) motor starter contacts will also
be brought in as inputs to provide low-voltage protection. The
low- and high-speed starter coils will be connected as outputs.
The rest of the circuit, including the timer, will be implemented
using programming instructions.

The completed PLC program will look like Figure 4-17. The
timer trap is implemented using the timer’s enable output. Inter-
nal contact B3:0/0 is used to implement the control relay for the
high-speed starter, which is driven by the high push button. The
two rungs of this program perform the following functions:

• Rung one controls the low-speed motor starter.

• Rung two controls the high-speed motor starter and
implements the 10.8-second delay through the use of
a timer ON-delay instruction.

Rung 1. The first rung of the ladder program controls the low-
speed starter coil and provides interlocking with the high-speed
starter coil. When the low push button is pressed, the motor will
start at low speed. At the same time, the timer will start timing
and its done output will turn on after 10.8 seconds.

Rung 2. The second rung controls the high-speed starter coil.
The fourth line of this rung turns the low-speed coil on when
the high push button is pressed. It does this using an internal
coil (B3:0/0) that bypasses the activation of the low push button
contact I:0:0/1 in the first rung. Once the high push button has
been pushed and the low-speed coil is on, the top three lines of
the second rung enable the timer, which begins the 10.8-second

Figure 4-17.Multispeed motor ladder program using the timer’s enable output to
trap the timer.

EN

DN

I:0.0/0 I:0.0/1 T4:0/DN I:0.0/4

I:0.0/0 I:0.0/1

I:0.0/2

B3:0/0 B3:0/0

B3:0/0

B3:0/0 T4:0/DN

O:0/0

L2 L2L1L1
O/0

O:0/1I:0.0/3

I/0Stop L

HO/1

TON

T4:0

I/1

L

I/2

I/3

High

H I/4

Low

I:0.0/3

T4:0/EN

B3:0/0

T4:0/EN

I:0.0/3

OLs

12 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

time delay. The timer is trapped using the T4:0/EN contact, which
references the enable coil. When the timer times out, its done
output will turn on. This will turn off the low-speed coil by
breaking continuity to it. At the same time, the high-speed starter
coil in line five of rung two will turn on because the done out-
put will be on and the low-speed coil will be off. The high-
speed push button in this rung is trapped on by contact B3:0/0
when the high push button is pushed. Thus, if the high-speed
push button is pressed, the motor will start at low speed and
then change to high speed after a 10.8-second delay.

Module 4 13

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

4-2 Counting Instructions

Just as timing instructions replace the need for electromechani-
cal timers in a PLC, counting instructions replace the need for
electromechanical counters. This section discusses the different
types of counting instructions available in a MicroLogix 1000.

At the end of this section, you will know:

• basic counter information

• the structure and operation of a MicroLogix’s counting
instructions

• special counter programming issues

General Counter Information
Counter Values. A counter instruction has two values associ-
ated with it:

• the preset value

• the accumulated value

These values perform the same function as they do in timer
instructions. The preset value specifies the target number of
counts, while the accumulated value indicates the actual num-
ber of counts that have already occurred. In a counter, the pre-
set and accumulated values always increase or decrease in in-
crements of one.

Addressing. Data about a MicroLogix 1000’s counters is stored
in file 5 of the data file section. The counter file can store the
data of up to 32 counters, numbered 0 through 31 (see Figure 4-
18). As with timers, each counter is allotted three words, which
are numbered 0, 1, and 2. Each of these three words stores
particular data about the counter instruction (see Figure 4-19):

Figure 4-19. The data stored in each word of a counter’s address.

Control

Preset

Accumulated

131415 1112

C5:0.0

C5:0.1

C5:0.2

Underflow
Overflow
Done
Count Down
Count Up

32 counters C5:0.0

C5:31.0

0.1
0.2

31.1
31.2

Counters5(b)

(a)

Counter 0
Counter 1

Counter 31

Control

Counter 1

Counter File
File 5 Preset

Accumulated

0

Word

1

2

Figure 4-18. (a) The counter file and (b) its addressing scheme.

14 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

• Word 0 is the control word, which stores data about
the counter block’s operation and status. This word
holds information about the status of the count up
and count down outputs and data about the counter’s
done, overflow, and underflow status. This informa-
tion is stored in bits 11 through 15 of the control word.

• Word 1 stores the counter’s preset value, which is the
target count value.

• Word 2 stores the counter’s accumulated value, which
is the actual count value. A counter’s preset and accu-
mulated words, words 1 and 2, are addressed with the
labels PRE and ACC in the RSLogix software.

Counting instructions allow the implementation of several types
of counter functions in a programmable controller. The three
counting instructions found in a MicroLogix 1000 are:

• the count up instruction

• the count down instruction

• the reset instruction

Count Up Instruction
A count up instruction is represented by the symbol shown in
Figure 4-20. The function of a count up instruction is to increase
its accumulated value by one every time the block’s input makes
an OFF-to-ON transition. After a certain number of OFF-to-ON
transitions have occurred, the count up instruction will energize
its output. A count up block has two output coils:

• a count up output coil (CU), which indicates that the
counter block is energized

• a done output coil (DN), which indicates that the count
is complete

Figure 4-20. A count up instruction.

DN

CUCOUNT UP

Counter
Preset
Accum

CTU

C5:2
3
0

OFF-to-ON
Transition

Increases
by 1

Energizes

Module 4 15

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Figure 4-21 shows a count up circuit in which a limit switch and
a solenoid are connected to a MicroLogix 1000 controller. The
solenoid should turn on after the limit switch has turned on
three times. The circuit operates as follows:

• When the limit switch turns on for the first time, the
count up output will be energized, and the accumu-
lated value will increase to 1.

• When the limit switch turns off then on again, the
accumulated value will increase to 2.

• When the switch makes its third OFF-to-ON transition,
the accumulated value will increase to 3 and the done
output will turn on because the accumulated value is
equal to the preset value.

• When the done output turns on, the solenoid output
in the second rung will be energized.

In a counter circuit, the counter will continue to count even
after the accumulated value has reached the preset value. The
done output will remain on as long as the accumulated count is
greater than or equal to the preset count. The only way to reset
the accumulated value and turn off the done output is to use a
reset instruction, which will be discussed later in this section.

Count Down Instruction
A count down instruction (see Figure 4-22) decreases its ac-
cumulated value by one every time the block’s input makes an
OFF-to-ON transition. When the accumulated value becomes
less than the preset value, the count down instruction de-ener-
gizes its output. When the counter’s accumulated value is greater
than or equal to its preset value, the counter’s output will be on.

Figure 4-21.A count up circuit in which a limit switch and a solenoid are connected
to a MicroLogix 1000.

LS1

DN

CU

O:0/0

I:0.0/0

C5:2/DN

C5:2/DN

C5:2/CU O/0 SOL
LS1 I/0

COUNT UP

Counter
Preset
Accum

CTU

C5: 2
3
0

L1 L2 L1 L2

Figure 4-22. A count down instruction.

DN

CDCOUNT DOWN
CTD

C5:2
2
4

Counter
Preset
Accum

OFF-to-ON
Transition Decreases

by 1

De-Energizes

16 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Like a count up instruction, a count down instruction also has
two outputs:

• a count down output, which indicates that the counter
is energized

• a done output, which signals that the target count value
has been reached

Figure 4-23 shows a count down circuit, which works as fol-
lows:

• In this circuit, the count down block’s done output
will already be on because the accumulated value is
greater than the preset value.

• When the block’s input turns from OFF to ON, the
accumulated value will decrease to 3.

• When the block’s input makes this OFF-to-ON transi-
tion again, the accumulated value will decrease to 2.

• When the input makes one more OFF-to-ON transi-
tion, the accumulated value will drop to less than the
preset value and the done output will turn off, de-
energizing the done output and output O:0/0.

In practice, a count down instruction is most often used with a
count up instruction to form an up/down counter. In the up/
down counter shown in Figure 4-24, both counters share the
same address and the same preset and accumulated values. As a
result, the up counter increases the accumulated value every
time a certain event occurs, while the down counter decreases
the same accumulated value if another event occurs.

Figure 4-23. A ladder program containing a count down circuit.

Figure 4-24. Up/down counter configuration.

DN

CU

I:0.0/0

COUNT UP

Counter
Preset
Accum

CTU

C5:0
100

0

DN

CD

I:0.0/1

COUNT DOWN

Counter
Preset
Accum

CTD

C5:0
100

0

Increase

Decrease

DN

O:0/0

CD

I:0.0/0

C5:2/DN

COUNT DOWN

Counter
Preset
Accum

CTD

C5:2
2
4

Module 4 17

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Reset Instruction
A reset instruction is a coil instruction that can reset either a
timing or counting instruction. When a reset instruction is ener-
gized, it sets the accumulated value of its corresponding timer
or counter to 0. It also resets all of the control bits in word 0 of
the timer or counter’s memory location.

The ladder program shown in Figure 4-25 illustrates a reset in-
struction being used to reset a count up instruction. The reset
coil shares the count up instruction’s address—C5:10. The count
up instruction has already counted up to 10, which is several
counts past its preset value. Consequently, the counter’s done
output is on. When the reset coil’s input is energized, the reset
instruction will set the up counter’s accumulated value to 0. At
the same time, it will reset all of the bits in the counter’s control
word. This will turn the done output off.

A reset instruction can be used with all types of timing and
counting instructions except a timer OFF-delay instruction. It
cannot be used with a timer OFF-delay instruction because a
reset instruction resets the done, timer timing, and enable bits of
the timer’s control word. If the status of these bits is altered
while a timer OFF-delay instruction is timing, a machine mal-
function could occur.

Special Programming Issues
When using counter instructions in a MicroLogix PLC, you must
consider some special programming issues:

• using a reset instruction to implement a self-resetting
counter

• counting past the maximum count

• reading fast input signals

Figure 4-25. A reset instruction being used to reset a count up instruction.

DN

CU

I:0.0/0

C5:10/DN O:0/0

I:0.1/1 C5:10

RES

131415 12 11
CU CD DN OV UN

10 0 0 C5:10.00

COUNT UP

Counter
Preset
Accum

CTU

C5:10
7

10

18 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Self-Resetting Counter. A self-resetting counter is a counter
that resets itself in the same scan after the accumulated value
reaches the preset value. Often a reset instruction is used in a
counter circuit to implement a self-resetting action. However,
this should be avoided in a MicroLogix 1000 unless certain pre-
cautions are taken, because the result will be an incorrect count
value. Following is an explanation of why.

Figure 4-26 shows a reset instruction used to implement a self-
resetting counter. When the counter’s input turns on, the accu-
mulated count value will increase to 1. At the same time, the
counter’s count up bit, bit 15, will turn on because its action
follows that of the counter’s input. Since the count up bit re-
flects the status of the input signal, the PLC uses it to determine
if the input signal has made an OFF-to-ON transition. It does
this by comparing the current status of the input signal to the
value stored in the count up bit address.

Figure 4-27 shows the self-resetting counter circuit after several
subsequent scans. If the input remains on in the scan following
the first OFF-to-ON transition (point A), the MicroLogix will com-
pare this 1 value to the value stored in count up bit 15 in scan 1.
Since the count up value is already a 1, the PLC detects that the
input has not made an OFF-to-ON transition. The controller will
continue to make this same comparison every scan (points B
and C). Therefore, when the input signal makes an off-to-on
transition (point D), the MicroLogix will know it because the
PLC will detect that the current status of the input is 1 and that
the previous status of the count up bit was 0. Since the PLC
senses an OFF-to-ON transition, it will increase its accumulated
count value by one. In this circuit, the done bit will turn on
since the accumulated value now equals the preset value.

Figure 4-26. A reset instruction used to implement a self-resetting counter.

Figure 4-27. The self-resetting counter circuit after several subsequent scans.

DN

CU

I:0.0/0

C5:2

RES

C5:2/DN

Input

CU (Bit 15)

DN

Reset

1
0
1
0
1
0
1
0

COUNT UP

Counter
Preset
Accum

CTU

C5:2
2
1

DN

CU

I:0.0/0

Scan

C5:2

RES

C5:2/DN

Input

CU (Bit 15)

DN

Reset

1
0

A B C D

1
0
1
0
1
0

1 2 3 4 5 6

COUNT UP

Counter
Preset
Accum

CTU

C5:2
2
2

Module 4 19

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Figure 4-28 shows what will happen after the counter’s done bit
turns on. When the done output turns on, the reset bit will also
turn on since the done bit provides the input logic to the reset
coil. The reset instruction will reset the accumulated value, as
well as the count up and done bits, to 0 at the end of the scan.
The reset instruction sets the count up bit to 0 (point A), but the
input signal has not turned off (point B). This means that in the
next scan the PLC will sense an OFF-to-ON transition as it com-
pares the input signal to the count up value (point C), even
though no transition has occurred. As a result, the PLC will in-
crease the counter’s accumulated value, despite the fact that no
actual input transition has occurred.

Thus, using a reset instruction to implement a self-resetting
counter will result in an inaccurate accumulated count value. To
avoid this situation, you can use one of the following program-
ming methods to create a self-resetting counter:

• Use a clear instruction instead of a reset instruction to
set the counter’s accumulated value to 0.

• Use a move instruction to move a value of 0 into the
accumulated word at the end of the scan.

• Use a reset instruction, but with a one-shot rising in-
struction programmed at the input to the counter. This
one-shot instruction will ensure that the input must
turn off and then on again before the PLC will incre-
ment its count value.

Job Aid 4-1 provides examples of each of these self-resetting
counter programming methods.

Counting Past The Maximum Count Value. A counter
instruction’s accumulated value has a range from –32,768 to
+32,767. Once a counter reaches a count of +32,767, it cannot

Figure 4-28.An illustration of what will happen after the count up instruction’s
accumulated value is reset.

DN

CU

I:0.0/0

C5:2

RES

C5:2/DN

Input

CU (Bit 15)

DN

Reset

1
0
1
0
1
0
1
0

1

0

COUNT UP

Counter
Preset
Accum

CTU

C5:2
2
1

Scan 1 2 3 4 6 75

A

B

C

20 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

go any higher. Therefore, it wraps the accumulated count back
around to –32,768 and starts counting up again. To count past
the +32,767 count value, you must cascade two counters, mak-
ing sure that they self-reset in each scan.

When two counters are cascaded, they are programmed so that
one counter provides the input to the other counter (see Figure
4-29). This way, the second counter counts how many times the
first one has reached its preset value. Figure 4-30 shows two
cascaded counters that implement a count to 100,000. These
cascaded counters have addresses C5:10 and C5:11, and their
programming works as follows:

• The input to the first counter is the event to be counted,
while the input to the second counter is a contact that
references the first counter’s done bit.

• The first counter will increase its count every time the
input event occurs. The second counter will increase
its count every time the first counter’s done output
turns on—that is, every time the first counter’s accu-
mulated value equals its preset value.

• If the first counter’s preset value is set to 1000 and the
second counter’s preset value is set to 100, they will
implement a count to 100,000.

• Internal output B3:0/0 indicates when the count has
reached 100,000 because this internal turns on when
the second counter’s done output turns on.

• The clear instruction resets the contents of the first
counter’s accumulated word to 0 every time its done
bit is enabled, so that the first counter will reset to 0
every time it reaches a count of 1000.

Figure 4-29.Cascaded counter, where counter 1 provides the input to counter 2.

Counter
1

Counter
2

Input

Figure 4-30. Two cascaded counters that implement a count to 100,000.

DN

CU

CU

I:0.0/0

COUNT UP
Counter
Preset
Accum

CTU

C5:10
1000

0

DN

C5:10/DN

C5:11/DN

C5:10/DN

B3:0/0

COUNT UP
Counter
Preset
Accum

CTU

C5:11
100

0

CLR
CLEAR
Dest C5:10.2

Module 4 21

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Job Aid 2-2 provides more information about cascading counters
to count past the maximum count.

Reading Fast Input Signals. If the input events to be counted
are happening at a rate faster than the scan, some of the inputs
will not be counted (see Figure 4-31). This is because a PLC
only detects inputs that are valid at the beginning of each scan.
It will not detect inputs that occur during the scan. If an applica-
tion requires the counting of fast inputs, you must use a high-
speed counter instruction to count them. This instruction is de-
signed to count fast input signal pulses at a frequency of up to
6.6 kilohertz.

Figure 4-31. If the input events to be counted are happening at a rate faster than
the scan, some of the inputs will not be counted.

Inputs

Detected Not
Detected

Detected Not
Detected

Detected

SCAN SCAN

22 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

4-3 Data Handling Instructions

This section discusses data-handling instructions. Data-handling
instructions are used to convert and move data within a Micro-
Logix PLC. Data-handling instructions are often used to inter-
face with field devices that supply or require data in BCD (bi-
nary coded decimal) form.

At the end of this section, you will know:

• BCD data-handling information

• how to use a convert-from-BCD instruction

• how to use a convert-to-BCD instruction

• how a move instruction operates

• how a masked move instruction operates

• how to apply ladder logic filtering to a BCD application

BCD Data-Handling Information
Before you can understand how BCD data-handling instructions
work, you must first understand two fundamental BCD topics:

• how BCD input data is sent from an input field device
to a PLC

• how BCD output data is sent from a PLC to an output
field device

Reading BCD Input Data. A BCD input device communicates
a decimal value to a PLC in binary coded decimal form. To
communicate this data, the device uses a 4-bit code containing
1s and 0s (see Figure 4-32). To send this code to the controller,
the device requires 4 input connections to the PLC’s input inter-

Figure 4-32.(a) Two BCD thumbwheel switches communicating decimal values to
a PLC in binary coded decimal form and (b) a decimal-to-BCD
conversion table.

Decimal BCD

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

(a)

(b)

DC
COM

NOT
USED

NOT
USED

I/0 DC
COM

I/1 I/2 I/3 I/4 I/5 I/6 I/7 I/8 I/9

0 1 0 1 0 0 1 1

5 3
+

–

+

–

Module 4 23

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

face—one connection for each BCD code bit. If more than one
input device is used, then each device requires its own four
separate input connections.

Figure 4-33 shows a thumbwheel switch connected to the first
four input terminals of a MicroLogix PLC. This thumbwheel switch
will transmit the BCD-equivalent value of the number 5 to the
controller by providing a voltage to terminals 1 and 3, but not to
terminals 0 and 2. Note that the PLC will interpret this number
as 1010 instead of 0101, which is the actual BCD equivalent of
the decimal number 5. This occurs because of the way the switch
is wired. The BCD data will be stored in the input file in reverse
order, with the most significant bit of the BCD value in the least
significant input bit position and vice versa.

After the PLC has received the thumbwheel switch’s BCD data,
the data must be stored in the integer file in the correct order of
significance. The ladder program shown in Figure 4-34 performs
this task. Each rung of this program contains an examine-if-
closed instruction that references one of the inputs. Each rung
also contains an internal coil that references a bit in the integer
file, which is where the input data will be transferred. This pro-
gram operates as follows:

• The thumbwheel’s inputs are programmed to transfer
their data to the appropriate bit of the integer word to
maintain the proper bit significance (i.e., input 3 to bit
0, input 2 to bit 1, input 1 to bit 2, and input 0 to bit 3).

• When the MicroLogix receives the BCD code equiva-
lent to the number 5, the contacts referencing inputs 1
and 3 will energize. As a result, the internal outputs
corresponding to integer word bits 0 and 2 will be on.

• At the same time, inputs 0 and 2, corresponding to
internal outputs 1 and 3, will be off.

Figure 4-33.A thumbwheel switch connected to the first four input terminals of a
MicroLogix PLC.

Figure 4-34.Ladder program used to store the BCD data in the integer file in the
correct order of significance.

DC
COM

NOT
USED

NOT
USED

I/0 DC
COM

I/1 I/2 I/3 I/4 I/5

0 1 0 1

LSBMSB

LSBMSB

5
+

– 1 023
1 001 I:0.0

I:0.0/3

I:0.0/2

I:0.0/1

I:0.0/0

N7:0/0

N7:0/1

N7:0/2

N7:0/3

LSBMSB

1 023
1 001

N7:0

1 023
0 110

I:0.0

24 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

• Consequently, bits 0 through 3 of the integer file will
store the value 0101, which is the BCD equivalent of
the number 5.

Writing BCD Output Data. A BCD output device works the
opposite of a BCD input. Figure 4-35 shows a seven-segment
indicator connected to the output interface of a MicroLogix 1000.
Like an input, a BCD output device requires four output con-
nections to receive a binary coded decimal value from a PLC.
The indicator is wired so that its least significant bit is wired to
terminal 5 and its most significant bit is wired to terminal 2.

Figure 4-36 shows the ladder program used to transfer the BCD
data from the integer file to the output device in the correct
order. This program uses internal contacts to reference the BCD
data stored in the integer file word. The rungs in this program
energize based on the status of their reference bits. This trans-
fers the BCD data to the output file via the output coils. The
ladder program reverses the data from the integer file so that it
is in the appropriate order and place in the output file.

BCD I/O Utilization. Using BCD input and output devices can
tie up a MicroLogix 1000’s I/O interfaces. If an application re-
quires five thumbwheel switches and three seven-segment indi-
cators, 20 input terminals and 12 output terminals must be used
for just the BCD devices alone. This leaves no room for other
inputs or outputs.

As an alternative to BCD I/O devices, you can use a MicroView
operator interface instead. This MicroView interface inputs BCD
data directly to the controller, replacing the need for thumb-
wheel switches, seven-segment indicators, and other similar BCD
devices. This interface connects directly to the MicroLogix’s RS-
232 communication channel, meaning that it does not utilize
any of the I/O terminals. The MicroView interface comes in
both a handheld and a panel-mounted model.

Figure 4-35. A seven-segment indicator connected to a MicroLogix’s output interface.

Figure 4-36.Ladder program used to transfer the BCD data from the integer file to
the output device in the correct order.

1 023
0 110

N7:0/0

N7:0/1

N7:0/2

N7:0/3

O:0/5

O:0/4

O:0/3

O:0/2

N7:0

1 023
0 110 O:0

5 4 23
O:0

0 1 0 1

VAC
VDC

VAC
VDC

VAC
VDC

VAC
VDCO/0 O/1 O/2 O/3 O/4 O/5 O/6 O/7

DC IN
+24–

Module 4 25

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Convert-From-BCD Instruction
A convert-from-BCD instruction is a block instruction that
converts the BCD data stored in a MicroLogix’s data file into its
equivalent decimal value (see Figure 4-37). This instruction block,
which is abbreviated by the letters FRD, contains two pieces of
information:

• a source location

• a destination location

The source location indicates where the BCD data to be con-
verted is located. The destination location indicates where the
decimal-equivalent value should be stored.

Figure 4-38 shows the first eight bits of integer file word 0,
which contains the BCD-equivalent of the decimal number 15.
This data is represented as two sets of 4-bit codes, with one
set—bits 4 through 7— being the BCD equivalent of the num-
ber 1 (0001) and the other set—bits 0 through 3—being the
BCD equivalent of the number 5 (0101).

Although the data in word 0 is supposed to represent the deci-
mal number 15, the MicroLogix does not interpret it that way.
Because a PLC is a straight binary machine, it interprets the data
in word 0 as the binary number 00010101, which is actually the
decimal number 21. As a result, you must use a convert-from-
BCD instruction to convert the BCD value 15 (00010101) into
the binary equivalent of the value 15 (00001111) and store this
converted value in a new word location (N7:1).

Convert-To-BCD Instruction
A convert-to-BCD instruction looks like a convert-from-BCD
instruction, but it is abbreviated TOD (see Figure 4-39). A convert-
to-BCD instruction converts data stored in decimal form into its

Figure 4-37. A convert-from-BCD instruction.

Figure 4-38.A convert-from-BCD instruction used to convert the BCD number
15 into the binary equivalent of the decimal number 15.

FROM BCD

Source

Dest

FRD

N7: 0

N7: 1

BCD

Decimal
Equivalent

Figure 4-39. A convert-to-BCD instruction.

TO BCD

Source

Dest

TOD

N7: 7

N7: 9

Decimal

BCD
Equivalent

N7:0
BCD 15

N7:1
Binary 15

FRD

1 0235 467

1 0235 467

0 10 0 0 10 1

0 00 0 1 11 1

26 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

equivalent BCD value. This instruction’s source word contains the
decimal value to be converted, while its destination word indicates
where the converted BCD-equivalent value should be stored.

A convert-to-BCD instruction performs the opposite function of
a convert-from-BCD instruction. Figure 4-40 shows a convert-
to-BCD instruction that takes the binary-equivalent decimal value
15 (00001111) and converts it into the BCD-equivalent form of
the number 15 (00010101). It then stores this BCD number in a
new word. Thus, the convert-to-BCD instruction converts the
decimal data into its BCD-equivalent value, which can then be
sent to a BCD output device.

Move Instruction
Like BCD instructions, a move instruction also comes in a block
format with both a source and a destination parameter (see Fig-
ure 4-41). A move instruction, however, simply moves data from
the source word and puts it into the destination word. It does not
convert or manipulate the data in any way. The data in a move
block’s source parameter can be either a variable value stored in
a word, which changes during program execution, or a fixed
constant value, which is entered during programming.

Masked Move Instruction
A masked move instruction is used to manipulate data as it is
moved (see Figure 4-42). A masked move instruction operates
like a regular move instruction, except that a masked move lets
you filter out data that you do not want to move. The mask
parameter specified in the instruction block is what performs
this filtering process. This mask parameter can be either a word
address location or a hexadecimal constant.

Figure 4-40.A convert-to-BCD instruction used to convert the binary-equivalent
decimal value 15 (00001111) into the BCD equivalent form of the
number 15 (00010101).

Figure 4-42. A masked move instruction.

Constant
Variable

MOVE

Source

Dest

MOV

N7:3

N7:11

Figure 4-41. A move instruction.

1 0235 467

1 0235 467

N7:7

N7:9

0 00 0 1 11 1 Binary 15

BCD 150 10 0 0 10 1

TOD

Hex Constant

Word Address

MASKED MOVE
Source
Mask
Dest

MVM

N7:0
F00F

N7:10

Module 4 27

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

The mask parameter of a masked move instruction specifies
which bits in the source word are to be moved to the destina-
tion word and which bits in the source word are to be masked—
that is, not moved (see Figure 4-43). If a bit in the mask word
contains a 1, then the corresponding bit in the source word will
be moved to the destination word. Conversely, if a bit in the
mask contains a 0, then the corresponding bit in the source
word will not be moved to the destination word.

As an example, Figure 4-44 shows a masked move instruction
that moves only the first four and last four bits of data in the
source word to the destination word. The instruction operates
like this:

• The first four and last four bits of the mask word are
set to 1, while the other bits are left as 0.

• When the masked move instruction is energized, only
the first four and last four bits of data will be moved to
the destination word.

• The middle bits in the destination word will not be
replaced. They will remain in their previous state, which
in this case was all zeros.

The bits in the mask register are set to either 1 or 0 in groups of
four using the hexadecimal equivalent of each group’s binary
pattern. Thus, you would use the letter F to indicate that a group
of four bits is set to one. You would use a 0 to indicate that a
group of four bits is set to zero. This notation is what you see as
the mask value in the masked move instruction. Job Aid 4-3
provides more information on using mask codes to filter data
and input BCD information.

Figure 4-43. Mask parameter of a masked move instruction.

Figure 4-44. A masked move instruction’s source, mask, and destination values.

Source

Destination

MASK Not
movedMoved

MASKED
1 0

Source

Mask

Destination

1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1

28 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Ladder Logic Filtering
Ladder logic filtering prevents BCD conversion errors due to
the difference in the BCD device and PLC processing speeds.
Figure 4-45 shows a thumbwheel switch that is sending the BCD
number 7 to a MicroLogix 1000. The PLC sees this number 7 as
the BCD value 0111. Note that the thumbwheel switch is wired
so that its least significant bit corresponds to the least significant
input word bit and its most significant bit corresponds to the
most significant input word bit.

If the thumbwheel switch’s value changes from 7 to the number
8, which has the BCD binary pattern of 1000, the device will
send the new number to the PLC. Because of its mechanical
nature, however, a BCD device operates slowly as compared to
a MicroLogix 1000. Thus, the BCD device may not be able to
send all of its new data to the PLC within the period of one scan.
In fact, it may take the device several scans to provide the BCD
pattern for the selected number. During this time, the output of
the BCD device may specify an invalid BCD bit pattern.

If the switch sends its terminal 3 data to the input terminals first,
before it sends any of its other new data (see Figure 4-46), and
then the PLC performs a scan, the controller will read the BCD
number 1111. This is not a valid BCD value. Thus, if the
MicroLogix tries to perform a BCD conversion on this data once
it has been input to the controller, an overflow will occur in bit
1 of status file word 0 (the math overflow bit). This overflow
will cause an error fault at the end of the scan, halting the PLC’s
operation. As a result of this invalid BCD number, the PLC will
store a +32,767 in the destination word of the convert-from-
BCD instruction.

Figure 4-45. A thumbwheel switch sending the number 7 to a MicroLogix.

Figure 4-46. The thumbwheel switch’s value changing from 7 to the number 8.

DC
COM

NOT
USED

NOT
USED

I/0 DC
COM

I/1 I/2 I/3 I/4 I/5

1 1 1 1 1 023
LSBMSB

I:0.01 111

8
+

–

Fast

Slow

Overflow S2:0/1

Error Fault

+32,767

FRD

DC
COM

NOT
USED

NOT
USED

I/0 DC
COMI/1 I/2 I/3 I/4 I/5

0 1 1 1

1 023
LSBMSB

I:0.01 110

7
+

–

LSB MSB

MSB LSB

Module 4 29

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

To avoid this situation, you must apply ladder logic filtering to
the circuit. Ladder logic filtering ensures that the data received
from the BCD device is a valid BCD code. This way, the PLC
will wait until it has received all of the updated BCD input data
before it performs a BCD-to-binary conversion.

Figure 4-47 shows a circuit with ladder logic filtering. It contains
three rungs, which perform the following functions:

• The first rung contains a convert-from-BCD block that
converts the BCD data in word N7:0 to its decimal
binary equivalent and stores it in word N7:1.

• The second rung contains an examine-if-closed con-
tact that references the MicroLogix’s status overflow
bit. If this contact is on, the convert-from-BCD instruc-
tion in rung one has read an invalid BCD code in its
source register. This contact drives an unlatch coil that
resets the overflow condition so that the MicroLogix
will not fault at the end of the scan. This will allow the
PLC to keep reading the input data.

• The third rung contains an examine-if-open instruc-
tion that also references the overflow bit. If the con-
vert-from-BCD instruction has received a valid BCD
code, then the overflow bit will not be on. Accord-
ingly, this rung will energize, moving the converted
BCD value in word N7:1 to word N7:10.

When this type of ladder logic programming is used, the desti-
nation word of the move instruction (in the previous case, word
N7:10) will hold the converted valid BCD value. This destina-
tion word should be used when referencing the converted BCD
number in the ladder program.

Figure 4-47. A circuit with ladder logic filtering.

Overflow Trap
S2:5/0

Overflow Flag
S2:0/1

U

S2:0/1

FROM BCD
Source

Dest

FRD

N7:0

N7:1

MOVE
Source

Dest

MOV

N7:1

N7:10

30 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

4-4 Review

• A timer ON-delay instruction energizes its output after its input turns on and a certain amount of time has elapsed.

• A timer OFF-delay instruction de-energizes its output after its input turns off and a certain amount of time has elapsed.

• A retentive timer instruction works like a timer ON-delay instruction, except that its accumulated value is retained even
if the timer’s input turns off.

• A trapping circuit is used to implement the instantaneous timer contact in a PLC program.

• A count up instruction increases its accumulated value by one every time its input makes an OFF-to-ON transition.

• A count down instruction decreases its accumulated value by one every time its input makes an OFF-to-ON transition.

• A count down instruction is usually used with a count up instruction to form an up/down counter.

• A reset instruction is used to reset the accumulated value and control bits of counter instructions, as well as timer ON-
delay and retentive timer instructions.

• A reset instruction cannot be used alone (unless some precautions are taken) to create a self-resetting counter circuit
because an incorrect count value will result.

• A cascaded counter circuit must be created for a counter to count past its maximum count value.

• A high-speed counter instruction must be used to count fast input signals.

• BCD input devices require four input terminal connections and four bits of memory, to send their BCD data to the PLC.

• BCD output devices require four output terminal connections and four bits of memory, to receive BCD data from a PLC.

• A convert-from-BCD instruction takes the BCD value stored in the source word and stores it in the destination word in
binary equivalent form.

• A convert-to-BCD instruction takes the binary data stored in the source word and stores it in the destination word in
BCD-equivalent form.

• A move instruction moves data from one word location to another without manipulating it.

• A masked move instruction moves only the source word data bits indicated by ones in the mask to the destination word.

• Ladder logic filtering is a special type of circuit that prevents the PLC control program from halting operation due to an
overflow fault resulting from an invalid BCD value.

Module 4 31

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

4-5 Job Aids

Job Aid 4-1: Self-Resetting Counter Programming Methods
Because a reset instruction cannot be used alone to implement a self-resetting counter circuit, you must use another programming
method to implement this type of circuit. Following are three methods that can be used to create a self-resetting counter.

Method 2: Use a move instruction to
move a source value of 0 into the
counter’s accumulated word at the
end of the scan.

Method 1: Use a clear instruction to
set the counter’s accumulated count
value to 0.

Method 3: Use a reset instruction in
conjunction with a one-shot rising in-
struction programmed at the input to
the counter.

TON

1
60
0

TIMER T4:0
Time Base
Preset
Accum

DN

I:0.0/0

CU

C5:I0/DN

CTU

C5:10
500

0

COUNT UP
Counter
Preset
Accum

(Clears accumulated value)

CLR
CLEAR
Dest C5:10.ACC

TON

1
60
0

TIMER T4:0
Time Base
Preset
Accum

DN

I:0.0/0

CU

C5:I0/DN

CTU

C5:10
500

0

COUNT UP
Counter
Preset
Accum

(Moves a constant of 0 to the
accumulated value)

MOV
MOVE
Source
Dest

0
C5:10.ACC

TON
TIMER T4:0
Time Base
Preset
Accum

DN

I:0.0/0 B3:0/0

OSR CU

C5:I0/DN C5:10

RES

CTU

C5:10
500

0

COUNT UP
Counter
Preset
Accum

(Resets accumulated
value to 0)

32 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Job Aid 4-2: Counting Past the Maximum Count
When a counter instruction reaches the end of its range of count values (–32,768 to +32,767), it wraps the accumulated count value
back around and starts counting from the other side. The following graphic illustrates what occurs when a counter reaches its
maximum count of +32,767:

To count past the maximum count, you must cascade two counters in a ladder circuit. You cannot try to trick a counter by setting
its preset value to the opposite end of the range because the done bit will not behave properly. For example, you could try to
count to +32,770 by setting a counter’s preset value to –32,766, since this value is three counts past the maximum limit once the
counter wraps its accumulated value around. However, this will not work for the following reasons:

• Once the counter wraps back around to –32,768, its overflow bit will turn on.

• When the overflow bit turns on, the counter’s done output will turn on, even though its accumulated value is less than
its preset value.

• At this point, the done bit will stay on until the overflow bit is reset or the counter counts back down to +32,767.

+32,767–32,768 Counter

Module 4 33

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Job Aid 4-3: Using Mask Codes to Filter BCD Data
You can use a masked move instruction to input data to a PLC from BCD devices connected to “odd” input terminal bit locations.
For example, the following diagram shows a thumbwheel switch that is connected to input terminals 2, 3, 4, and 5 of a 16 I/O
MicroLogix 1000:

To filter and move this BCD data, you could use a masked move instruction to mask out all but the thumbwheel switch’s input data
and move it to an integer word location. You could then use a bit shift right instruction to shift the BCD data into the integer word’s
first four bits before performing a convert-from-BCD instruction.

The next page shows a ladder program that would implement this action in a MicroLogix PLC. This ladder diagram contains a
masked move (MVM) instruction in rung 0 to read the thumbwheel switch’s input data (inputs I/2 through I/5). The MVM
instruction uses a hexadecimal mask value of 003C to move only the desired bits into word N7:0. The bits in this word must then
be shifted two positions to the right for the word to contain the correct BCD number in the correct position. The shifting of the two
bits is accomplished in rungs 1 through 5. Rung 6 implements a BCD-to-decimal conversion.

DC
COM

NOT
USED

NOT
USED

I/0 DC
COM

I/1 I/2 I/3 I/4 I/5 I/6 I/7 I/8 I/9

5
+

–

0 1 0 1

34 Module 4

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

TON

Read Data
Input Signal

I:0.0/9

Read Data
Input Signal

I:0.0/9

Read Data
Input Signal

I:0.0/9

Processor
Arithmetic
Underflow/

OverflowFlag
S2:0/1

Processor
Arithmetic
Underflow/

Overflow Flag
S2:0/1

Not
Shifted 2 Times

Q2:99
Shifted 2 Times

C5:0/DN

Shifted 2 Times
C5:0/DN

Shifted 2 Times
C5:0/DN

Not
Shifted 2 Times

Q2:99

Overflow
Trap

S2:5/0

Finished 2 Shifts
Reset Counter

C5:0

Reset Shift to 0
B3:0/0

Reset Shift to 0
B3:0/0

Shift Command
B3:0/2

Shift Command
B3:0/2

Shift Command
B3:0/2

LBL

END

Shifted 2 Times
C5:0/DN

DN

EN

DN

JMP

CU
U

CTU

C5:0
2
0

COUNT UP
Counter
Preset
Accum

TONFRD

N7:0
N7:1

FROM BCD
Source
Dest

TONMOV

N7:1
N7:10

MOVE
Source
Dest

TONBSR

N7:0
R6:0

N7:0/15
6

BIT SHIFT RIGHT
File
Control
Bit Address
Length

TONMVM

I:0.0
003C
N7:0

MASKED MOVE
Source
Mask
Dest

1

0

2

3 6

7

4

5

Module 4 35

T i m i n g , C o u n t i n g , a n d D a t a - H a n d l i n g I n s t r u c t i o n s

Following is a detailed explanation of the function of each of the ladder rungs:

• Rung 0: The XIC contact I:0.0/9 in this rung references an input event that will trigger the MVM instruction, which reads
and transfers the thumbwheel switch’s BCD input data to word N7:0. If the input data is to be read continuously, rather
than conditionally, this XIC contact should be omitted. If this is the case, the I:0.0/9 contacts in rungs 1 and 4 should be
omitted as well.

• Rungs 1, 2, 4, and 5: Rungs 1 and 2 implement an oscillating OFF-to-ON/ON-to-OFF input command for the bit shift right
(BSR) instruction in rung 3 by referencing the output of the count up instruction, also located in rung 3. The counter
keeps track of how many times the BSR instruction has been executed. These rungs work as follows:

– If the BSR instruction has been executed less than two times, rung 4 will jump the program to rung 1, which resets rung
2 (if rung 2 is already energized). Subsequently, rung 2 will energize, meaning that the BSR instruction will be executed.

– If the BSR instruction has already been executed two times, then rung 4 will not be energized, meaning that program
execution will move to rung 5. Rung 5 resets the counter’s accumulated value.

• Rung 3: The BSR instruction shifts the BCD data bits in the integer word. When the BSR block’s input turns from OFF to
ON, the block will shift the contents of word N7:0 one bit to the right. The block uses the following parameters to
complete this operation:

– The file parameter (N7:0) indicates where the data to be shifted is stored.

– The control parameter (R6:0) stores control data about the BSR instruction (e.g., EN output, DN output, length, etc.).

– The length parameter (6) specifies the file word bit into which data will be shifted—i.e., word N7:0, bit 5 (the sixth bit).

– The bit address parameter (N7:0/15) specifies the location of the data to be shifted into the specified file word bit. This
bit address will always contain a 0, so each time the BSR instruction is executed, the bits in word N7:0 will be shifted
one bit to the right and a 0 will be stored in bit N7:0/5.

The counter in this rung simply counts the number of times the BSR instruction has been executed. The counter’s done
output will be energized when the BSR instruction has been executed two times.

• Rung 6: This rung implements the BCD-to-decimal conversion of the data stored in word N7:0. Once the data has been
shifted into the proper position, the convert-from-BCD block will convert the BCD number into its equivalent decimal
value. This rung also contains ladder logic filtering to prevent an overflow fault due to an invalid BCD number. Thus,
once the PLC determines that a valid BCD number has been converted, the move instruction will transfer the newly
converted data to word N7:10, where it will be stored for use by the rest of the control program.

Note that this program could be programmed as a subroutine rather than as part of the main control program if you did not want
to include it in the main program.

